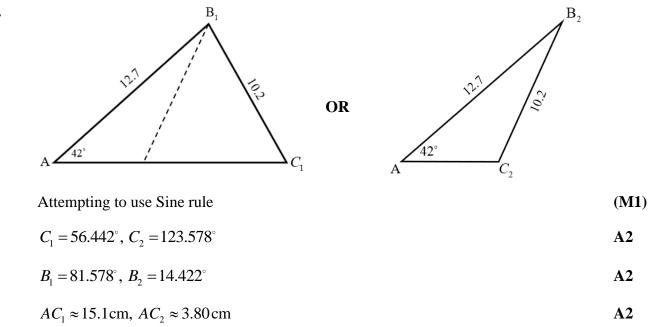
1. (a) 100 students

SL Paper 2 Mock A 2020 - MARKSCHEME v1


$\ensuremath{\mathbb{C}}$ InThinking – IB Maths Analysis and Approaches

(t	b) $Q_1 = 200$	(A1)
	$Q_3 = 600$	(A1)
	a = 55, b = 75	A1
2. (a	Value after <i>n</i> years = 3000×1.046^n	(M1)A1
	Value after 7 years $=$ \$4110.01	A1
(t	b) $5000 = 3000 \times 1.046^{x}$	(M1)
	x = 11.3584	(A1)

The investment will exceed \$5000 after a minimum of 12 full years

Hence, x = 12

3.

A2

A1

4. Recognising general term of $(4x + p)^5$ is $\binom{5}{r} (4x)^{5-r} p^r$ (M1)A1

INTHINKING

Attempting to find the value of r that corresponds to x^3 term (M1)

Substituting
$$r = 2$$
 into general term of $(4x + p)^5$ (M1)

$$\binom{5}{2} (4x)^{5-2} p^2 = 640 p^2 x^3; \ 640 p^2 = 160$$
(A1)

$$p = \pm \frac{1}{2}$$
 A1

5.
$$P(X < 5) = 0.04 \implies Z \approx -1.75069...$$
 A1
 $P(X < 25) = 0.7 \implies Z \approx 0.524401...$ A1

Use of formula for standardized normal variable
$$Z = \frac{x - \mu}{\sigma}$$
 (M1)

$$\mu - 1.75069\sigma = 5$$
 (A1)

$$\mu + 0.524401\sigma = 25 \tag{A1}$$

$$\mu \approx 20.4 \operatorname{min}, \ \sigma \approx 8.79 \operatorname{min}$$
 A2

6. Recognising that
$$v(t) = \int a(t) dt = \int \left(\frac{3}{t} + 2\sin 2t\right) dt$$
 (M1)

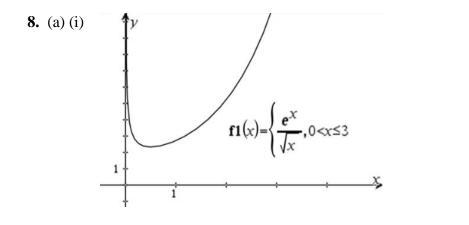
Attempting to integrate
$$\int \left(\frac{3}{t} + 2\sin 2t\right) dt$$
 (M1)

$$v(t) = 3\ln t - \cos 2t \tag{A2}$$

Substituting into v(1) = 0 (M1)

$$C = -0.4161...$$
 A1

$$v(6) \approx 4.12 \text{ ms}^{-1}$$
 A1


SL Paper 2 Mock A 2020 - MARKSCHEME v1

Section B

7. (a) $y = 10.7x + 121$	A2
(b) (i) unit cost (additional cost per box)	A1
(ii) fixed costs (cost when zero boxes are produced)	A1
(c) Attempting to solve for y when $x = 60$	(M1)
y = 760.124	(A1)
Hence, cost of 60 boxes is approximately \$760	A1
(d) Attempting to solve for <i>x</i> when $19.99x > y$	(M1)
<i>x</i> > 12.9405	(A1)
Hence, the factory must produce at least 13 boxes per day to make	a profit A1
(e) This would be extrapolation, which is not appropriate	A2

SL Paper 2 Mock A 2020 - MARKSCHEME v1

A2

(ii) Attempting to differentiate h(x) using quotient rule (M1)

$$h'(x) = \frac{x^{\frac{1}{2}} e^{x} - \frac{1}{2} x^{-\frac{1}{2}} e^{x}}{\left(x^{\frac{1}{2}}\right)^{2}}$$
(A1)

$$h'(x) = e^{x} \left(\frac{2x-1}{2x\sqrt{x}}\right)$$
 A1

(iii) Recognising that gradient of normal $=-\frac{1}{h'(x)}$ (M1)

gradient of normal to curve
$$= -\frac{2x\sqrt{x}}{e^x(2x-1)} \left(= \frac{2x\sqrt{x}}{e^x(1-2x)} \right)$$
 A1

(b) (i) Substituting
$$x_1 = 1$$
, $y_1 = 0$, $y = \frac{e^x}{\sqrt{x}}$ into the formula $m = \frac{y - y_1}{x - x_1}$ (M1)

$$m = \frac{e^x}{\sqrt{x(x-1)}}$$
 A1

[Markscheme for question 8 continued on next page]

[©] InThinking – IB Maths Analysis and Approaches

SL Paper 2 Mock A 2020 - MARKSCHEME v1

8. (b) (continued)

(ii)
$$\frac{e^x}{\sqrt{x}(x-1)} = \frac{2x\sqrt{x}}{e^x(1-2x)}$$
 (M1)

x-coordinate of P is $x \approx 0.545428...$

y-coordinate of P is $y \approx 2.33619...$ A1

minimum distance from Q to graph of h is length of PQR1minimum distance ≈ 2.38 A1

9. (a) (i) Recognising this as a binomial distribution with n = 5 and $p = \frac{1}{5}$ M1

$$\mathbf{E}(X) = 1$$
 A1

(ii)
$$P(X \ge 3) = P(X = 3) + P(X = 4) + P(X = 5)$$

$$P(X=3) = \frac{32}{625}$$
 A1

$$P(X=4) = \frac{4}{625}$$
 A1

$$P(X=5) = \frac{1}{3125}$$
 A1

$$P(X \ge 3) = 0.05792$$
 A1

(b) (i) Recognising that
$$\sum P(Y = y) = 1$$
 (M1)

Substituting probabilities into $\sum P(Y = y) = 1$ (M1)

$$4a + 2b = 0.24$$
 AG

[Markscheme for question 9 continued on next page]

[©] InThinking – IB Maths Analysis and Approaches

SL Paper 2 Mock A 2020 - MARKSCHEME v1

9. (b) (continued)

	(ii) Substituting probabilities into $E(Y) = \sum y P(Y = y) = 1$	(M1)
	13a + 5b = 0.75	A1
	Attempting to use result from (b) (i) to find values of a and b	(M1)
	a = 0.05, b = 0.02	A2
(c)	$P(Y \ge 3) = 0.03 + 0.12 + 0.04 = 0.19$	A1
	0.19>0.05792	(A1)
	Hence, Isabel is more likely to pass the test.	A1